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Abstract. We are developing a computer application, called the Bayes Inference
Engine, to provide the means to make inferences about models of physical real-
ity within a Bayesian framework. The construction of complex nonlinear models
is achieved by a fully object-oriented design. The models are represented by a
data-flow diagram that may be manipulated by the analyst through a graphical-
programming environment. Maximum a posteriori solutions are achieved using
a general, gradient-based optimization algorithm. The application incorporates a
new technique of estimating and visualizing the uncertainties in specific aspects of
the model.
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1. Introduction

As scientists, we use models to describe and understand physical reality. In build-
ing our models from data, we must be able to answer such questions as: Which
models are appropriate? What are the values of the model parameters? How cer-
tain can we be in our interpretations drawn from measurements that are subject
to uncertainty? The methodology of Bayesian analysis provides the framework
to address these questions. In the Bayesian approach our degree of certainty is
represented as a probability density function. Appropriate calculation and use of
the posterior, the probablity that summarizes all available information concern-
ing a particular physical situation, permits us to quantitatively answer the above
questions regarding our models of the physical world.

We are developing a computer application, which we call the Bayes Inference
Engine (BIE), to provide a tool with which to easily perform Bayesian analysis
of physical models. The BIE represents a computational approach to Bayesian in-
ference, as opposed to the traditional analytical approach [1]. The computational
approach affords great flexibility in modeling, which facilitates the construction
of complex models for the objects under study. For instance, the BIE easily deals
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with data that are nonlinearly dependent on the model parameters. For example,
radiographic data are not linearly related to material densities [2]. One of our
first goals is to reconstruct objects from several radiographs taken of them. Fur-
thermore, the computational approach allows one to use nonGaussian probability
distributions, such as entropic priors, which have been used with great success in
certain kinds of applications [3,4].

Given the context of these Proceedings, it should not be necessary to provide a
detailed description of Bayesian analysis. To learn the basics of Bayesian analysis,
the reader is referred to the collected works of the Proceedings of this workshop
series, in particular to those by Gull and Skilling and their colleagues [3-5], to
textbooks that explain the modern view of Bayesian methodology [6,7], or to
several introductory articles related to image analysis written by one of the authors
[8,9]. Lack of space also precludes us from showing examples produced by the BIE.
The reader is encouraged to look at some of the many references cited, many of
which are available on the World Wide Web (http://home.lanl.gov/kmh).

2. The Bayes Inference Engine

Our goals for the BIE are that it should be easy to learn and to use and that
it should provide a high degree of interactivity with good visualization of the
inference process and the models. Additionally, we are building an application
that provides the user with a great deal of flexibility in configuring object models
and measurement models. We deem these features essential to the usefulness of
the BIE.

In Bayesian analysis, the state of knowledge about the parameters x associated
with a model that describes the physical object being studied is summarized by
the posterior, which is the probability density function p(x|d) of the parameters
given the observed data d. Bayes law gives the posterior as

p(x|d) o< p(d[x) p(x) - (1)

The probability p(d|x), called the likelihood, comes from a comparison of the
actual data to the data predicted on the basis of the model of the object. The pre-
dicted data are generated using a model for how the measurements are related to
the object, which we call the measurement model. The prior p(x) expresses what is
known about the object, exclusive of the present measurements, and may represent
knowledge acquired from previous measurements, specific information regarding
the object itself, or simply general knowledge about the parameters, e.g. that they
are nonnegative. Bayes law says that for a given object model the posterior can be
evaluated by combining the likelihood, which requires the data values predicted
for that object model, and with the numerical value of the prior. This calculation
is usually straightforward. It involves calculating the predicted measurements for
the given object model, which we refer to as the forward measurement calculation.

A typical nonBayesian approach to estimating model parameters from a given
set of data is to attempt to apply the inverse of the forward measurement process
to the data. Such an approach is plagued by problems, particularly when there are
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insufficient data to uniquely determine all aspects of the actual object or when the
measurements are degraded by excessive noise. Common remedies for overcoming
such problems is to invoke some sort of regularization to permit the inverse solution
or to reduce in the model the number of parameters to be determined.

We avoid the calculational difficulties of direct inversion in the BIE by basing
the estimation procedure on the forward measurement calculation, which results
in an evaluation of ¢ = —log[p(x|d)] (neglecting a constant normalization term).
The parameters for the object model are found using an algorithm to minimize
o with respect to those parameters, which results in the well known maximum a
posteriori (MAP) solution because it maximizes the posterior. This optimization
process is facilitated by making use of the derivatives of ¢ with respect to the
object parameters, which are calculated using the adjoint differentiation technique
described in Sect. 4. The use of priors provides the means of regularization in a
probabilistic way that has a quantifiable basis, which may potentially be verified
experimentally. We note that this numerical approach has many benefits, which
were outlined in the Introduction. Thus with the computer we can obtain accurate
Bayesian solutions to fairly complex problems that are intractable using analytic
approaches. The computer also allows us to explore complex situations employing
data visualization to enhance understanding, fulfilling the promise of using the full
posterior provided by the Bayesian approach.

The BIE incorporates many innovative features, including:
1) a graphical programming tool programmed in an object-oriented language,
which greatly enhances the flexibility of modeling objects and measurements,
2) adjoint differentiation to calculate the gradient of ¢, with respect to all object
parameters,
3) new approaches to solving the constrained optimization problem, which is re-
quired to find the MAP solution,
4) geometrical representations of physical objects, and
5) a new method to explore the reliability of the Bayesian solution.

We will describe each of these new developments in the following sections.

3. Data Flow Diagram

The analyst interacts with the BIE through a graphical programming environ-
ment [10], as shown in Fig. 1. We believe that this mode of interaction provides a
very intuitive interface for building models because most scientists and engineers
have had some experience with data-flow diagrams. The square icons represent
transforms, which are connected by lines drawn between them to describe flow of
data.

We are programming the BIE using the object-oriented (OO) language Smalltalk
in the version supplied by ParcPlace Systems', which includes a complete class
library, including classes for easy development of a graphical user-interface. In our
description of object classes in the BIE, we capitalize the class names in accor-
dance with the naming convention of this object-oriented language. A distinctive

1ParcPlace Systems, Inc., 999 East Arques Ave., Sunnyvale, CA 94086, tel: 408-481-9090

127



| |
— NodeManager | : |J|

MNew Transform Delete Component
Acual Data

OBJECT Likelihood

MODEL MEASUREMENT MODEL

=

Projection Exponentiation Blur Data

Optimizer

<]

Figure 1. The canvas of the Bayes Inference Engine permits one to specify a data-flow diagram
by connecting together Transforms, represented visually by squares on the canvas.

feature of the BIE is that the Transforms represented in Fig. 1 are ‘living’ objects
with which one can interact. By clicking on the icon representing the Transform
with the middle mouse button, a menu pops up that allows one to specify a re-
quest of the Transform. One can see a description of a Transform and change the
parameters that define it. One can have the Transform display its output data
structure.

Referring to the data-flow diagram in Fig. 1, the Parameters of the object
model (the lefthand icon) provide input to the measurement model. The radio-
graphic measurement model shown consists of the next three icons, which sequen-
tially take the projection of the object, exponentiate the result, and perform a
convolution with a point-spread function kernel to account for radiographic blur.
The output of the measurement model represent predicted Data, which is fed into
a (minus) LogLikelihood function, designated by @, along with the actual data,
the uppermost icon. A LogPrior, which operates on the model parameters, can
also be specified. The output of the LogLikelihood is fed into the Optimizer, the
lower right-hand icon, whose task it is to find the values of the object-model pa-
rameters that result in a minimum value for ®. One specifies the Parameters of the
object model that are to be optimized by connecting their icons to the Optimizer.
After optimization, the object model and its Parameter values represent the MAP
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Figure 2. A generic data-flow diagram showing a sequence of transformations, represented by
the boxes A, B, and C, starting with the data structure x and resulting in the scalar ¢. The flow
of data for the adjoint derivatives is in the reverse direction, from right to left.

solution.

We have come to realize that the OO approach has provided much more than
just a productive programming environment; it has aided in the design of the over-
all application, as well as the numerical algorithms at a basic level. For example,
the following aspects of the BIE have been elucidated by OO design: the adjoint
differentiation technique, the accommodation of constraints in optimization, the
automatic connection of the Optimizer to any parameter, and the appropriate role
of Connectors and Transforms in the data-flow diagram. An interesting aspect of
the OO design of the data-flow diagram is that no supervisor of the sequence of
calculations is needed; the Transforms simply do what they are asked to do, when
they are asked to do it.

4. Adjoint Differentiation

To obtain the MAP estimate in the BIE, we need to minimize the scalar function
by varying the variables that comprise the parameters of the object model. This
optimization problem would be intractable without knowing the gradient of ¢,
or sensitivities, with respect to the many parameters on which it depends. We
have uncovered a technique to calculate these crucial sensitivities, called adjoint
differentiation [11], that is apparently little known. Using the adjoint differentiation
technique the calculation of all these derivatives can be done in a computational
time that is comparable to the forward calculation through the data-flow diagram.
The adjoint sensitivity technique is crucial to the efficient operation of the BIE. We
believe that it could be beneficially employed in many types of forward modeling
codes. See [1] for more details.

Consider a calculation such as the sequence of transformations depicted in
Fig. 2. In the context of the BIE, the transformations are implemented by the
Transform class. The independent variables in the data structures designated by
the vector x are transformed by block A to produce the dependent variables y. This
is transformed by block B to produce the dependent data structure z, and finally
by C to produce the scalar ¢, which would correspond to the minus logarithm of
the posterior in the BIE.

We make no assumptions about the transformations except that they are differ-
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entiable. The transforms can be nonlinear, as is the case for projections of objects
defined in terms of their geometry (see Sect. 6) and for exponentiation, which is
needed to model radiographic measurements.

The flow diagram indicates that ¢ depends on z, which depends on y, which
in turn depends on X, the independent variables. The chain rule for differentiation
gives the derivatives of ¢ with respect to the ith component of x,

Op Op 0z 0y,
00: ~ 2 0y Oy 001 @
ik 7o

Even if the transformations are nonlinear, this expression amounts to a product
of matrices, each element of which specifies the differential response of an output
variable with respect to a differential change of an input variable.

The essence of adjoint differentiation is to perform the sum on the indices in
the reverse order from that used in the forward calculation. If the sum on k is
done before that on j, the sequence of calculations is

C/T 8(pT B/T 8<pT A/T aspT
I——= — = — =
0z oy ox

where I represents the indentity vector and, for example, B’ f implements the
adjoint of the matrix g—;. This sequence implies intermediate data structures (e.g.

%5) that resemble the normal data structures (e.g. y). Thus the requirement for
storing these data structures is merely double that required to store the structures
for the forward calculation, which may be required for the sensitivity calculation
if the transformations are nonlinear. The backward flow of the adjoint derivatives
is depicted in Fig. 2.

If the sums over the indices were done in the opposite order, mimicking the
forward calculation, the intermediate data structures would be matrices contain-
ing a number of elements equal to the product of the sizes of the forward data
structures. Since we are considering very large forward data structures, this way
of accumulating the sensitivities could be untenable.

Our use of objects to represent transformations greatly helps implement this
adjoint calculation [12]. In accordance with the OO approach, each transforma-
tion is self-contained; it requires only its input variables to calculate its output
variables, e.g. module B uses only its input y to calculate its output z. Therefore,
each transformation should require nothing more than its input to implement the
derivative of its output variables with respect to its input variables. We emphasize
that in the OO approach we are using, each Transform has the responsibility to
propagate the adjoint derivative from its output side to its input side. The Trans-
form “knows how” to do this because it knows how to accomplish the forward
calculation.

In reality, what this means is that when a new Transform is created by a
programmer, the code for propogating the adjoint derivative should be developed
using the logic of the forward calculation to determine the derivatives of the out-
put variables with respect to the input variables. We stress that the derivative
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matrix need not be explicitly calculated and stored. The adjoint code has the re-
sponsibility of calculating the effect of multiplying derivatives on its output side
by the derivative matrix, which can often be achieved using computer code that
is very similar to the code for the forward calculation. To illustrate, for linear
transformations, which can be characterized in terms of a matrix multiplication,
the implementation of the adjoint differentiation calculation simply amounts to
multiplication by the transpose of that matrix. In this case the transpose opera-
tion can often be realized by trivially altering the computer code for the forward
transformation.

5. Optimization

In the BIE the MAP solution is found by minimizing ¢ with respect to all the
model parameters. Our optimization procedure is based on knowing the gradient
of ¢ with respect to the parameters, which is calculated as described in the pre-
vious section. Our use of OO programming imposes certain restrictions on how
the optimization can be implemented. For example, many of the models in the
BIE impose constraints on parameters. Some constraints involve fixed limits on
individual parameters, e.g. nonnegativity. Constraints can also exist between pa-
rameters. The approach to optimization must include these in an OO way. That
is, the Optimizer should only request that the Parameters act on themselves. Ex-
amples of possible actions include a) add a specified vector to the present values
of the parameters and b) satisfy constraints on the parameters.

The general method that we employ to guarantee that the constraints on the
parameters are met is by projection onto convex sets (POCS) [13]. Each Parameter
checks whether constraints are violated. If they are, the Parameters minimally
change themselves to meet the constraints [14].

6. Geometric Representation of Objects

Deformable models have been developed in a number of fields to describe objects
geometrically, particularly in computer vision where the aim is to decompose a
scene (image) in terms of geometrical objects [15-17].

We are pioneering the use of deformable geometric models to improve tomo-
graphic reconstructions of objects from just a few views [18-20]. This tack is quite
different from the normal one of representing a 2D object in terms of its density,
typically described by square pixels on an ordered grid. The reconstruction process
amounts to deforming an initial object geometry in a minimal way to match the
data. In the Bayesian approach, one controls the geometric deformation by placing
a prior on it. The net effect is to add to ¢ a deformation energy that penalizes
larger deformations. This approach has proven to be a valuable means to achieve
good reconstructions in situations where all other methods fail, for example when
only two radiographs are available [20]. However, it must be emphasized that this
approach can only be successful when the objects being reconstructed have a fairly
simple morphology that is approximately known beforehand.
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7. Exploration of the uncertainty in a Bayesian solution

One of the most important features of the Bayesian approach is that the posterior
characterizes of the degree of certainty in the models used in an analysis. Although
many articles have been written about Bayesian image analysis, surprisingly few
of these have fully exploited the full posterior as a measure of uncertainty. The
reason probably lies in the fact that it is computationally difficult to cope with
the posterior in a large dimensional space.

One way to visualize the reliability of an inferred model is to display a sequence
of solutions that are randomly chosen from the posterior probability distribution.
This approach, proposed by Skilling et al. [21], provides a stochastic look at the
range of possible solutions. The sequence of images, typically calculated off line,
is presented as a video loop. By showing a representative range of alternative
solutions, the degree of variability of this presentation provides the viewer with a
visual impression of the degree of uncertainty in the inferred model. One would
expect that the present emphasis in Bayesian research on Markov chain Monte
Carlo methods [22] to generate random samples of the posterior will be useful for
this type of visualization.

We have proposed a new approach [23,24], which is based on drawing an anal-
ogy between ¢ and a physical potential. Then the gradient of ¢ is analogous to
a force. From this viewpoint an unconstrained MAP solution can be interpreted
as the situation in which the forces on all the variables in the problem balance so
that the net force on each variable is zero. Further, when a variable is perturbed
from the MAP solution, the derivative of ¢ with respect to that variable is the
force that drives it back towards the MAP solution. The phrase “force of the data”
takes on real meaning in this context.

To explore the reliability of a particular feature of a MAP solution, the user
specifies it by directly perturbing the selected combination of parameters that
characterize the feature of interest. The posterior is incremented on the basis of this
perturbation to effectively apply a constant force to the parameters in question.
Then, all the parameters are readjusted to minimize the new (. The uncertainty in
the parameters is indicated by the amount that they move away from their MAP
values for a given applied external force. The correlations between parameters
experiencing the external force and the others is demonstrated by how much and in
what direction the parameters change. We have shown that this approach leads to a
quantitative estimate for an appropriate part of the covariance matrix for problems
in which the parameters are unconstrained [23,24]. Ideally, these correlations could
be seen through direct interaction with a rapidly-responding dynamical Bayesian
system. Alternatively, they may be demonstrated as a video loop produced off line.

8. Future Directions
The BIE provides us with an ideal basic tool with which to make Bayesian infer-

ences regarding physical models. We aim to extend its existing capabilities in a
number of directions.
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In developing the BIE we have concentrated on two-dimensional models, in
order to impact our programmatic goals. We expect to develop both 1D and 3D
models. One-dimensional models will enable us to develop demonstrations of how
the Bayesian approach addresses many familiar problems such as deconvolution,
or restoration, of blurred 1D signals, spectral estimation, interpolation, and line
fitting. Calculations in 1D can be done very quickly, so that the concepts discussed
in Sect. 7 can be demonstrated in a real-time interactive environment. We also
expect to develop three-dimensional modeling capabilities before long so that we
can address the problem of tomographic reconstruction of 3D objects.

The interactivity of the BIE allows the analyst to fully diagnose the models
he creates. Feedback about what is needed from the model to match the data is
provided by displaying the gradient of ¢, which shows the force of the data. The
full interactivity with the object models makes it easy to augment the models to
achieve a better fit to the data. The Bayesian methodology allows one to make
inferences about the choice of models appropriate to describe reality. Our prefer-
ence for simpler models over more complex ones can be incorporated through a
prior on model complexity [5]. An interesting example of model selection is sup-
plied in the context of an object defined by its boundary, which is smooth by
default. The boundary might be allowed to develop a kink, i.e. an abrupt change
in slope, thereby negating the smoothness constraint at a particular place, if the
data provide enough evidence for such a departure from the default model [25].
We anticipate that the gradient of ¢ will play a fundamental role in making such
such decisions about when the complexity of a model needs to be increased.

We will implement the means to generate random samples from the posterior
[22]. This capability could be used to estimate the posterior mean (as an alter-
native to the posterior mode) and variance, which is one way to summarize the
uncertainty in solutions. This technique permits marginalization with respect to
any nuisance parameters. It also can provide a visualization of the uncertainty in
solutions by displaying as a video loop the sequence of random samples [21].
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